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I. ELECTROMAGNETIC FIELD INSIDE THE METAL

A. Non-local bulk response

The material response of a bulk metal is most conveniently formulated in Fourier space as a relation between the
polarization and the electric field:

Pω,k = χ̂ω,k Eω,k, (1)

where the bulk susceptibility tensor χ̂ can be further decomposed into longitudinal and transverse parts according to:
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with χ̄ = χℓ −χtr and k = |k|. The term involving χ̄ yields in real space and time a contribution to the susceptibility
tensor: ∫

d3k

(2π)3

∫
dω

2π
kαkβ

χ̄ω,k

k2
ei(k·r−ωt) =

1

i

∂

∂rα

1

i

∂

∂rβ

∫
d3k

(2π)3

∫
dω

2π

χ̄ω,k

k2
ei(k·r−ωt)︸ ︷︷ ︸

=:f(t,r)

= − ∂

∂rα

rβ
r

∂

∂r
f(t, r) = −δαβ

r
f ′ − rαrβ

r

∂

∂r

(1
r
f ′), (3)

where we have used that the Fourier-transform of a function that only depends on k = |k| is in real space a function
of r = |r|. Thus the susceptibility tensor in real space and time reads:

χ(t, r)αβ = δαβ

(
χtr(t, r)− f ′(t, r)

r

)
− rαrβ

r

∂
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r
(4)

Transforming (1) to real space and time we obtain:

P (t, r) =

∫
d3r′

∫
dt′ χ(t− t′, r − r′)E(t′, r′), (5)

which is clearly a non-local relation in space and time. Indeed, (5) can be interpreted such that a field E at a space-
time point r′, t′ is the source of a polarization that spreads away from the source point until it reaches the point r,
t. The integration in (5) means that the polarization at r, t is the superposition of all contributions that spreading
away from their respective source points have reached r at time t.

B. Specular reflection model of the surface

When a metallic half-space z < 0 is bounded by a surface to a dielectric occupying the region z > 0 it is clear
that there cannot be any sources for a metallic response outside the metal since the electromagnetic response in the
dielectric is local in space and time. Thus an obvious modification of (5) is that the z′ integration can extend only
over the half-space z′ < 0. However, further modifications are necessary to account for the presence of a surface. In
the specular reflection model it is assumed that each point r′, t′ inside the metal is, as in the bulk, a source of a
polarization that at time t′ starts spreading away from this point. When this polarization wave reaches the surface
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it cannot propagate into the region outside the metal and thus gets reflected. Therefore, at each point r, t one needs
to collect not only the contributions to P that have reached this point directly propagating away from r′, t′ but also
the parts that have been reflected at the surface. Noting that Ṗ represents a current we have to enforce the boundary
condition that its normal component is zero at the surface since otherwise there would be a current flowing into the
region z > 0 which is prevented by the high potential barrier for the electrons in the metal. The condition Ṗ⊥ = 0
at the interface can be regarded as an additional boundary condition (ABC) of the type proposed by Pekar.1 Here,
it appears as a consequence of the specular reflection model (SRM) for metal electrons. This condition can be easily
ensured by superimposing the corresponding component of the reflected wave with a minus sign. For the tangential
component the situation is different since in the x−y-plane the polarization can freely oscillate. Thus the reflection
should take place like the reflection of a string with an open end, i.e., the corresponding component of the reflected
wave should be superimposed with a plus sign. In the specular reflection model restricting the source points to the
half-space z′ < 0 and superimposing the reflected polarization waves to the waves that would propagate away from
these source points in a bulk system, constitutes the description of the material response of a metallic half-space.
Altogether these ideas can be summarized by the following material equation:

P (t,ρ, z) =

∫
d2ρ′

∫ 0

−∞
dz′

∫
dt′χ̂H(τ, ρ̄, z, z′)E(t′,ρ′, z′), (6)

where we have used the shorthand notations ρ̄ = ρ− ρ′, τ = t− t′ and the susceptibility tensor χ̂H for the metallic
half-space is given by:

χ̂H(t,ρ, z, z′) = M̂ (+)
[
χ̂(t,ρ, z − z′) + χ̂(t,ρ,−z − z′)

]
+ M̂ (−)

[
χ̂(t,ρ, z − z′)− χ̂(t,ρ,−z − z′)

]
, (7)

where we have introduced the matrices:

M̂ (+) =

1
1

0

 and M̂ (−) =

0
0

1

 (8)

which project on the components tangential and normal to the surface, respectively. Further, we have defined

ρ = M̂ (+)r and χ̂ is the bulk susceptibility tensor. Finally, we assume that in the frequency range of interest
the magnetization is negligible such that for the magnetic fields we can write:

H = B. (9)

The main approximation of the specular reflection model is that the bulk susceptibility χ̂ is used to describe the
electronic response up to the surface, although the potential barrier at the border of the metal will lead to a region
with a reduced electron density near the surface. For a metallic half-space the electronic depletion is restricted to a
small region near the surface that is typically only a few nm thin. In this paper we will neglect this effect.

C. Continuation of the fields in the metallic half-space to the entire space

The purpose of this section is to show that the fields P and E describing the behavior of the metal in the half-space
z < 0 can be continued to the entire space in such a way that (6) becomes a convolution integral over the entire space
when rewritten in terms of the continued functions. To this end we note that while P (t,ρ, z) in (6) represents the
polarization in the metal only for z < 0, the expression on the r.h.s. of this equation is formally meaningful also for

values z > 0. Thus, a natural continuation of the metallic polarization is to define a function P̃ which is defined in
the entire space by the r.h.s. of (6). This is equivalent to:

P̃ (t,ρ, z) = P (t,ρ, z) for z < 0 and M̂ (±)P̃ (t,ρ, z) = ± M̂ (±)P̃ (t,ρ,−z) for z > 0. (10)

We continue the electric field with the same symmetry such that:

Ẽ(t,ρ, z) = E(t,ρ, z) for z < 0 and M̂ (±)Ẽ(t,ρ, z) = ± M̂ (±)Ẽ(t,ρ,−z) for z > 0. (11)

By definition P̃ is given by the r.h.s of (6) and can be decomposed into two parts:

P̃ (t,ρ, z) = P̃<(t,ρ, z) + P̃>(t,ρ, z), (12)
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where P̃< collects the contributions to the half-space susceptibility (7) where the bulk susceptibility χ̂ is evaluated
with the argument z − z′. Using

M̂ (+) + M̂ (−) = 1̂ (13)

and (11) we find:

P̃<(t,ρ, z) =

∫
d2ρ′

∫ 0

−∞
dz′

∫
dt′χ̂(τ, ρ̄, z−z′) Ẽ(t′,ρ′, z′). (14)

P̃> accounts for the remaining contributions to (7) where χ̂ is evaluated with the argument −z − z′. We insert these
parts into (6) and substitute in the z′ integral z′ → −z′ to obtain:

P̃>(t,ρ, z) =

∫
d2ρ′

∫ ∞

0

dz′
∫

dt′
{[

M̂ (+)−M̂ (−)
]
χ̂(τ, ρ̄,−z+z′)

[
M̂ (+)+M̂ (−)

]
︸ ︷︷ ︸

=1̂

}
E(t′,ρ′,−z′). (15)

From (4) we deduce that:

M̂±χ̂(τ, ρ̄, z)M̂± = M̂±χ̂(τ, ρ̄,−z)M̂± and M̂±χ̂(τ, ρ̄, z)M̂∓ = −M̂±χ̂(τ, ρ̄,−z)M̂∓. (16)

Using (16) together with (11) and (13) on the r.h.s of (15) we obtain:

P̃>(t,ρ, z) =

∫
d2ρ′

∫ ∞

0

dz′
∫

dt′χ̂(τ, ρ̄, z−z′) Ẽ(t′,ρ′, z′). (17)

such that with (12) and (14) we finally find:

P̃ (t, r) =

∫
d3r′

∫
dt′χ̂(t− t′, r − r′) Ẽ(t′, r′) (18)

demonstrating that the continued functions P̃ and Ẽ are connected by the same relation as the functions P and E
for a bulk metal in (5).

D. Maxwell equations for the continued fields

In order to proceed we introduce the electric displacement field D̃ that is connected with the continued fields Ẽ

and P̃ by:

D̃ = Ẽ + 4π P̃ , (19)

implying that D̃ continues the electric displacement field D inside the metal to the entire space with the same

symmetry as stated for Ẽ and P̃ in (10) and (11). Since D̃ coincides with D for z < 0 it has to obey divD̃ = 0
for z < 0. The symmetry of the continuation guarantees that this equation also holds for z > 0. At this point it is

important to recall that D̃ for z > 0 is not the physical field D which describes in this region the local response of
a simple dielectric. In particular, the normal component of D is required by the usual continuity relations for the
Maxwell equations to be continuous at the surface, i.e.:

Dz(t,ρ, z = 0+) = Dz(t,ρ, z = 0−) = D̃z(t,ρ, z = 0−). (20)

On the other hand, D̃z being defined for z > 0 as the anti-symmetric continuation of Dz for z < 0 may exhibit a
discontinuity at the surface given by:

4πσ(t,ρ) = D̃z(t,ρ, z = 0+)− D̃z(t,ρ, z = 0−) = −2D̃z(t,ρ, z = 0−). (21)

We note in passing that the the discontinuity in (21) is not the discontinuity of the real field on the both sides of the
interface - it is the discontinuity between the field and its mirror reflection at the interface. Thus, this condition is
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not the ABC for real fields.1 It is a consequence of the continuation of the EM problem onto the entire space. The

discontinuity results in a singular contribution to divD̃ such that:

divD̃ = 4π δ(z)σ(t,ρ). (22)

Next we introduce the continuation of the magnetic field in the metal as:

B̃(t,ρ, z) = B(t,ρ, z) for z < 0 and M̂ (±)B̃(t,ρ, z) = ∓ M̂ (±)B̃(t,ρ,−z) for z > 0, (23)

which implies that:

rotẼ = −1

c
˙̃
B. (24)

For z < 0 (24) is just one of the Maxwell equations in the metal. The symmetries (11) and (23) guarantee that (24)

also holds for z > 0. Here, no singular contribution occurs since only Ẽz exhibits a discontinuity and the l.h.s. of (24)
does not contain a z-derivative of this component.

Since the tangential components of B̃ are defined as an odd continuation with respect to z, they may exhibit a
jump at z = 0 given by:

4π

c
β(t,ρ) = M̂ (+)

[
B̃(t,ρ, z = 0+)− B̃(t,ρ, z = 0−)

]
= −2M̂ (+)B̃(t,ρ, z = 0−) =:

4π

c

βx

βy

0

 . (25)

Obviously, this jump does not introduce singular contributions to divB̃. From Maxwells equations and noting that

the symmetry (23) implies that divB̃ is an odd function of z we find that:

divB̃ = 0 (26)

holds in the entire space. The discontinuity (25) leads to a singular surface contribution to rotB̃ that can be written
as:

4π

c
δ(z) j(t,ρ) =

4π

c
δ(z)

−βy(t,ρ)
βx(t,ρ)
0

 , (27)

such that the Maxwell equation for rotH̃ = rotB̃ turns into:

rotB̃ =
4π

c
δ(z) j(t,ρ) +

1

c
˙̃
D. (28)

Finally, writing the Maxwell equations for the continued fields in Fourier space we obtain:

ik · D̃ω,k = 4π σω,q (29a)

ik × Ẽω,k = i
ω

c
B̃ω,k (29b)

ik · B̃ω,k = 0 (29c)

ik × B̃ω,k =
4π

c
jω,q − iω

c
D̃ω,k, (29d)

where q = M̂ (+)k is the part of k tangential to the surface. Furthermore, we have the material equation:

D̃ω,k = ε̂ω,kẼω,k, with ε̂ω,k = 1̂ + 4π χ̂ω,k, (30)

which follows from (19) and (18) where χ̂ has to be taken from (2).
The solution of (29) is most easily found by decomposing all fields into longitudinal and transverse parts. Using

(2) the action of the dielectric tensor ε̂ simplifies to:

D̃ω,k = ε̂ω,k · Ẽω,k = εℓω,k Ẽ
ℓ
ω,k + εtrω,k Ẽ

tr
ω,k, (31)
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where Ẽℓ and Ẽtr denote the longitudinal and transverse parts of Ẽ, respectively. With the help of (31) the Maxwell
equations (29) naturally separate into simple algebraic equations for the longitudinal and transverse field components.
Solving for the electric fields we obtain:

Ẽℓ
ω,k = k

4π σω,q

ik2εℓω,k

(32a)

Ẽtr
ω,k =

4π w
c2

i
(
w2

c2 ε
tr
ω,k − k2

) (
jω,q − k

ωσω,q

k2

)
(32b)

Once Ẽ is known the magnetic field is found from (29b).

II. SOLUTION TO THE SCATTERING PROBLEM

A. Reflection coefficient for TM polarization

We consider a geometry as sketched in Fig. 1 in the main text, where an incident wave is approaching the surface
of a metal at an angle θ coming from a dielectric in the half-space z > 0 with a wave vector kin and a reflected wave
with wave vector kre such that:

kin = kin

 sin(θ)
0

− cos(θ)

 , kre = kin

sin(θ)
0

cos(θ)

 . (33)

The TM (p) wave reflection corresponds to the case where the incoming and reflected electric fields have only
components lying in the plane spanned by kin and kre. Since in a simple dielectric the k-vector has to be orthogonal
to the field we can write the electric field of a p wave in the half-space z > 0 as:

E(t, r) = E0e
i(qinx−ωint)

[
Reik

in
z z

(
cos(θ)
0

− sin(θ)

)
− e−ikin

z z

(
cos(θ)

0
sin(θ)

)]
, (34)

where R is the reflection coefficient, qin = kin sin(θ), and kinz = kin cos(θ) with (kin)2 = (qin)2 + (kinz )2 = εh(ω
in/c)2,

where εh is the dielectric constant of the dielectric half-space. The electric displacement for z > 0 is given by

D(t, r) = εh E(t, r). (35)

and the magnetic field is obtained from the Maxwell equations as

B(t, r) =
cE0k

in

ωin

(
eik

inr +Reik
rer

)
eye

−iωint, (36)

where ey is the unit vector in y-direction. Now we have to match the solutions in both media at the interface. The
continuity of Dz yields the surface charge as

σω,q =(2π)2εhE0 sin(θ)(R+ 1)δ(q − qinex) δ(ω − ωin), (37)

with ex being the unit vector in x-direction. The continuity of the tangential components of B yields the current

jω,q =
(2πc)2E0k

in

ωin
δ(q − qinex)δ(ω − ωin)(R+ 1)ex. (38)

The continuity of Bz is trivially fulfilled for p waves since this component is zero on both sides of the surface. Finally,
the tangential component of E is to be matched with the tangential component of the field in the dielectric. This
yields

Et(t,ρ, 0
−) = E0 cos(θ)e

i(qinx−ωint)(R− 1)ex, (39)

where the field on the metal side is given by the solution of the Maxwell equations with the surface charge density
and current defined above. Resolving this equation for R one finds the reflection coefficient given in Eq. 1 of the main
text, where in the final expression we have renamed qin, ωin and R in q, ω and Rp, respectively.
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B. Reflection coefficient for TE polarization

In this case the wave vectors of the incoming and reflected waves are again given by (33). For a TE wave the electric
field is linearly polarized perpendicular to the plane spanned by kin and kre, i.e. in our case in y-direction. We thus
can write

E(t, r) = E0

(
eik

in·r +Reik
re·r

)
ey e

−iωint. (40)

In this case Dz = 0 for z > 0 and therefore σω,q = 0. The corresponding magnetic field is found as

B(t, r) =
cE0k

in

ωin
ei(q

inx−ωint)

cos(θ)
0

sin(θ)

 e−ikin
z z +R

− cos(θ)
0

sin(θ)

 eik
in
z z

 . (41)

The continuity of the tangential component of the magnetic field yields

jω,q =
(2πc)2E0k

in

ωin
cos(θ) (R− 1)

× δ(q − qinex) δ(ω − ωin) ey. (42)

The continuity of the tangential component of the electric field yields

Et(t,ρ, 0
−) = E0 e

i(qinx−ωint)(R+ 1)ey. (43)

Now, using the solution to the Maxwell equations for the field together with the obtained expression for the surface
current one obtains the reflection coefficient in Eq. 1 in the main text. We note in passing that in this case the
continuity of Bz leads to the same condition as the continuity of the tangential component of the electric field.

III. INTER-BAND TRANSITIONS

Transitions of carriers between different conduction bands in metals provide additional contributions to the metal
permittivity. These are typically active in the visible and near-violet spectral range for noble metals and can distort
the contribution of the electron gas (intra-band transitions) in the SASE domain. The common approach consists in
separating the intra-band effects from inter-band effects2. The contribution of the inter-band transitions is assumed
to be local. Following Cardona3 they can be modeled by the following dielectric susceptibility

χib
ω = 4π

l=empty∑
k=occupied

Flk

ω2
lk − (ω + iΓib)

2 (44)

respectively, ωlk is the transition frequency, Flk ∼ |pkl|2 /ωlk is the oscillator strength with pkl being the matrix
element of the momentum operator, and Γib is a broadening factor due to particle scattering. In this model, every
transition between an occupied state and an empty state contributes an extra Lorentzian oscillator to the dielectric
function. It should be noted that a satisfactory description using this expression often requires an exceedingly large
number of Lorentzian terms with fitted parameters4–9.
To select the most contributing transitions from the physical perspective Etchegoin et al. have proposed to

use the Critical Points model10, which has been successfully employed for the analysis of inter-band transitions
in semiconductors11 as well as in noble and transition metals12–15. It was later improved by taking into account
the band structure of the metals16,17. In this model one assumes that the matrix element in the oscillator strength
varies slowly around the transition points and that the only dependence on the states is given by ω−1

lk
3. It is further

assumed that Γib is constant for each transition point and that only direct transitions are accounted for. Under these
assumptions the summation in Eq. (44) can be replaced by an integration over the joint density of states (jDOS)
Jj (ω) (j denotes the critical point). The jDOS may be expressed as an integral over the density of states for the
bands involved in the transition

Jj (ω) =

∫ ∞

−∞
Nj,1 (E)Nj,2 (E + ℏω) dE (45)
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where Nj,1 (E) and Nj,2 (E) denote the DOS for the initial (j,1) and the final (j,2) bands at the critical point j. The
total contribution to the susceptibility is then found as

χib
ω =

∑
j

Aj

∫ ∞

0

Jj (ξ)

ξ2 − (ω + iΓj)
2

dξ

ξ
, (46)

where the sum runs over the contributing critical points.
It follows from DFT band calculations,16 that the relevant critical points of metallic silver are located in the visible

energy range at the X and L symmetry points. The dispersion of the transition energy around those points is assumed
quadratic with three effective masses. The critical point at X has a gap of about 4.0 eV for Ag and it is of M1 type3

with one negative and two positive effective masses along the primary axes. The corresponding jDOS is given by

J1(ω) ∝

 0, ω < ω01√
ωg1 − ω01 −

√
ωg1 − ω, ω01 < ω < ωg1√

ωg1 − ω01, ω > ωg1

, (47)

where ωg1 are ω01 parameters of the band. Substituting this into the expression for the susceptibility one obtains the
following expression

χib
1 (ω) = A1

{
−
√
ωg1 − ω01

2 (ω + iΓ1)
2 ln

[
1−

(
ω + iΓ1

ω01

)2
]
+

2
√
ωg1

(ω + iΓ1)
2 tanh−1

√
ωg1 − ω01

ωg1

−
2
√
ω + iΓ1 − ωg1

(ω + iΓ1)
2 tan−1

√
ωg1 − ω01

ω + iΓ1 − ωg1
−
2
√
ω + iΓ1 + ωg1

(ω + iΓ1)
2 tanh−1

√
ωg1 − ω01

ω + iΓ1 + ωg1

}
(48)

At the L symmetry point, the gap is slightly above 4.0eV. This critical point is of M2 type3 having two negative
and one positive effective masses. The jDOS in this case can be approximated as

J2 (ω) ∝

{
0, ω < ω02

1, ω > ω02
. (49)

The corresponding contribution to the susceptibility is obtained as

χib
2 (ω) =

A2

2 (ω + iΓ2)
2 ln

[
1−

(
ω + iΓ2

ω02

)2
]

(50)

Parameters of each contributing point (ω0j , ωgj , Γj , and Aj) are usually found by fitting experimental data. In our
calculations we have taken those parameters from Ref.16,17 summarized in table I.

ωgj(eV) ω0j(eV) Γj(eV) AMj (eV
3/2)

j=1 4.06 3.93 0.018 191
j=2 – 4.17 0.19 31

TABLE I. Parameters for the dielectric response of the inter-band transitions in Ag. ωg2 is not required for Eq. (50).

IV. ANALYTICAL ESTIMATIONS FOR THE SASE PEAK

We derive an analytical estimation for the SASE contribution to the absorptivity as given by Eqs. (15) and (16)
in the main text. In what follows we use the scaled units so that the frequency becomes ω̄ → αω, and the absolute
value of the EM wave vector writes as k = αω and its tangential component is q = cos(θ)αω.

Calculating the respective integral for the Drude contribution ZD
p in Eq. (16) in the mains text to the surface

impedance one obtains

ZD
p =

i

cos(θ)

√
−εDω + sin2(θ)

εDω
. (51)
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FIG. 1. Contours for the evaluation of H0(µ), H1(µ) (solid lines) and H2(µ) (dashed line). Red contours correspond to
|f(x, µ)|−1 with the saddle point xs. Blue dashed line is the cut for the ln(x− 1) function.

The real part of this expression gives in the limit of small γ ≪ ω

Re[ZD
p ] ≃ γ

2 cos(θ)

1 + ω2 − 2ω2 cos2(θ)

(1− ω2)2
√
1− ω2 cos2(θ)

. (52)

Equation (15) in the main text for the corrective term can be further simplified by noting that here one needs only
the imaginary part. Using the fact that the integrand in Eq. (15) in the main text is an even function of kz and
substituting k = (ω + iγ)x we represent the integral in Eq. (15) in the main text as∫ ∞

0

dk

k2

(
1

εℓωk

− 1

εDω

)
=

1

(ω + iγ)
H(µ) (53)

where

H(µ) =

∫ ∞

0

[
1

f(x, µ)
+

1

x2(µ2 − 1)

]
dx, (54)

µ2 = [ω(ω + iγ)]−1 and

f(x, µ) = x2 + 3µ2

[
1− 1

2x
log

(
x+ 1

1− x

)]
. (55)

The behavior of the function 1/f(x, µ) is shown in Fig. 1 in the complex x-plane. This function has logarithmic
branching points at x = ±1, the branch cut line is chosen to go vertically, upwards from x = 1. This integral can be
estimated by the saddle-point method by shifting the integration contour to the complex space. To do this we first
split the integration interval to [0, 1] and [1,∞). The first integral

H0(µ) =

∫ 1

0

[
1

f(x, µ)
+

1

x2(µ2 − 1)

]
dx (56)

has a very small imaginary part at large µ where it has the asymptotic H0(µ) ∝ 1/µ2.
The integral in the second interval writes as

H1(µ) = H2(µ) +
1

µ2 − 1
, (57)

where the second contribution is the result of the exact integration of the second term in the integrand in Eq. (54)
and

H2(µ) =

∫ ∞

1

dx

x2 + 3µ2
[
1− 1

2x

(
ln

(
x+1
x−1

)
+ iπ

)] . (58)
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Here we used the explicit form of the imaginary part of f(x, µ) provided by the logarithm with a negative argument.
The value of this integral is evaluated by employing the stationary- or saddle-point approximation. To do this we

first find the stationary point xs of the function f(x, µ) by solving the equation df(x, µ)/dx = 0. At large x this
equation reads as

6µ2

x3
− 3iπµ2

2x2
+ 2x = 0. (59)

The solution to this equation is obtained using the perturbation expansion assuming µ is large. It gives

xs ≃
(3πi)1/3µ2/3

22/3
+

4i

3π
, (60)

where we chose the most relevant solution. We then substitute the expansion of the function f(x, µ) in the vicinity
of the stationary point into the integrand and deform the integration contour C into the complex plane as shown in
Fig. 1 by the dashed line. Finally we extend the lower end of the integration contour also to infinity. This yields

H2(µ) ≃
∫
C

dx

f(xs) + f ′′(xs)(x− xs)2/2
=

π
√
2√

f(xs)f ′′(xs)
, (61)

where

f(xs)f
′′(xs) ≃

(3i)2/3
(
16 + 9π2

)
µ4/3

21/3π4/3
+ 18µ2. (62)

Further, for the chosen parameters Im[H2(µ)] dominates over both Im[1/(µ2 − 1)] and Im[H0(µ)] already at µ ≳ 1.2.
It is also possible to neglect the imaginary part of µ that is defined by the decay rate Γ. Substituting the results of
Eqs. (62) and (61) into Eq. (15) in the main text and using µ ≈ 1/ω yields the estimate for the SASE contribution
to the surface impedance as

Re
[
δZS

p

]
≃ 2αω2 sin2(θ)

3 cos(θ)
Im

[
1√

1 + (1.04 + 1.8i)ω2/3

]
, (63)

where we substituted numerical values for the constants. Substituting the result into the absorptivity ratio in Eq.
(16) in the main text together with the Drude approximation (51) one obtains

rSp ≃ 1− 4αω sin2(θ)

3γ

(1− ω2)2
√
1− ω2 cos2(θ)

1 + ω2 − 2ω2 cos2(θ)
Im

[
1√

1 + (1.04 + 1.8i)ω2/3

]
(64)

This equation is already quite simple but can be reduced even further by neglecting ω ≪ 1 and cos(θ). When one
further uses the expansion with respect to ω and keeps the largest contribution one obtains Eq. (17) in the main text.
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