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1. SYSTEM HAMILTONIAN

The quantum dot is modeled as a four-level system, which is placed inside a cavity with two
cavity modes, one for each of the two orthogonal linear polarizations, X and Y. The Hamiltonian
of this system reads [1, 2]

H0 =h̄ωx(|X⟩ ⟨X|+ |Y⟩ ⟨Y|) + (2h̄ωx − ∆B) |B⟩ ⟨B|
+ (h̄ωx − ∆B/2)(a†

XaX + a†
YaY),

(S1)

where h̄ωx is the energy of the exciton states, ∆B the biexciton binding energy (BBE) and the
operators aX/Y(a†

X/Y) destroy (create) a photon in the respective cavity mode. The quantum dot
is excited via an external laser and coupled to the cavity, so the electron-light interaction is given
by

Hel =− h̄
2
(ΩX(t)σ†

X + ΩY(t)σ†
Y)

+ h̄g (aXσ†
X + aYσ†

Y) + h.c..
(S2)

Here, g governs the strength of coupling to the cavity, and the terms ΩX/Y(t) describe the field
of the laser used to excite the quantum dot with the respective linear polarization operators
σS = |G⟩ ⟨S|+ |S⟩ ⟨B|, where S ∈ {X, Y}.
For the production of photon entanglement, the cavity used is resonant with the two-photon
transition. This offers the advantage that the QD only has to be tuned to match this specific
transition. This is simpler compared to alternative approaches of, for example, tuning each transi-
tion (namely, B − X/Y and X/Y − G) to correspond with individual cavity modes. Furthermore,
studies have demonstrated that the scenario using a two-photon resonant cavity yields higher
entanglement compared to setups where cavity modes match single transitions [3, 4]. However, it
should be noted that in this setup, photon separation cannot be achieved spectrally. Instead, tools
such as a beam splitter are required.
For the excitation, we assume a Gaussian-shaped pulse given by

Ω(t) =
α√

2πσ2
e−

t2

2σ2 e−iωLt, (S3)

where α is the pulse area, σ is a measure of the pulse duration, which is related to the full-width
at half maximum (FWHM) of the intensity by τFWHM = 2

√
ln(2) σ. The frequency of the laser

pulse, denoted by ωL, is connected to the detuning to the quantum dot ground-state to exciton
transition by ∆ = h̄(ωL − ωx).

The state preparation in quantum dots is disturbed by the surrounding environment. At
low temperatures, the influence of longitudinal acoustic phonons acts as a limiting effect, this
interaction with the lattice vibrations is modeled using the pure-dephasing type Hamiltonian

Hph =h̄ ∑
q

ωqb†
qbq + h̄(|X⟩ ⟨X|+ |Y⟩ ⟨Y|+

2 |B⟩ ⟨B|)∑
q

(
gqbq + g∗qb†

q

)
.

(S4)



Table S1. Parameters that are used in the simulations, unless mentioned otherwise.

Parameter Symbol Value

Fine-structure splitting h̄δ0 0 meV

Biexciton binding energy ∆B 1 meV

Radiative decay rate, X/Y γx 0.01 ps−1

Radiative decay rate, B γB = 2γx 0.02 ps−1

Cavity coupling h̄g 0.06 meV

Cavity outcoupling h̄κ 0.12 meV

Detuning, pulse 1 ∆1 −5 meV

Detuning, pulse 2 ∆2 −12.96 meV

Pulse area, pulse 1 α1 32π

Pulse area, pulse 2 α2 12.8π

Pulse durations σ1/2 2.7 ps

The operator b†
q(bq) creates (destroys) a phonon with wave vector q. The phonons are coupled

to the exciton states with the coupling element gq and follow the linear dispersion relation
ωq = cLAq, where cLA is the velocity of sound in the material. Containing two excitons, the
coupling to the biexciton is twice as strong. We use the same material parameters as in Ref. [5],
with an electron confinement length (size of the quantum dot) of 5 nm.

The photons emitted by the quantum dot are modeled using Lindblad operators L,

LO,γρ =
γ

2

(
2OρO† − O†Oρ − ρO†O

)
. (S5)

For the radiative decay with rate γ, this leads to the Operators L|G⟩⟨X|,γx
, L|G⟩⟨Y|,γx

, L|X⟩⟨B|,γB/2,
L|Y⟩⟨B|,γB/2. The out-coupling of photons from the cavity with rate κ leads to the operators LaX ,κ ,
LaY ,κ . The parameters used in the calculations are given in Tab. S1.

2. CALCULATION OF THE CONCURRENCE

To quantify the degree of entanglement, we utilize the concurrence as a measure of the entan-
glement degree [6]. The concurrence is determined from the two-photon density matrix ρ2P by
evaluating the four eigenvalues λi of the matrix

M = ρ2PTρ2P∗T, (S6)

where ρ2P∗ represents the complex conjugate of the two-photon density matrix and T is the
anti-diagonal matrix with the elements (−1, 1, 1,−1). After sorting the eigenvalues in decreasing
order, i.e., λi+1 ≤ λi, the concurrence is then given by [6, 7]

C = max
{

0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4

}
. (S7)

The two-photon density matrix ρ2P is calculated using two-time correlation functions of the
transition operators σ̃X/Y , as explained in detail in Ref. [8] (SI). In calculations without a cavity, the
transition operators correspond to the polarization operators, i.e., σ̃X/Y = σX/Y . In calculations
including a cavity, the transition operators correspond to the cavity photon operators, i.e., σ̃X/Y =

aX/Y . These operators are then used in the two-time correlation functions of the form

G(2)
AB,CD(t, τ) = ⟨σ̃†

A(t)σ̃
†
B(t + τ)σ̃D(t + τ)σ̃C(t)⟩. (S8)
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Fig. S1. (a) Exemplary G(2)
XX,XX(t, τ = 0) for TPE, and (b) the dynamics of the cavity photon

number NX/Y for calculations including two and three photons per cavity mode, compared to
the approximation including one photon per cavity mode and the states |G, 2, 0⟩ and |G, 0, 2⟩.

Due to numerical limitations, calculations including phonons and the cavity consider only one
photon per X/Y polarized cavity mode. In addition, the states consisting of the quantum dot’s
ground state and two photons per cavity mode (i.e., |G, nX = 2, nY = 0⟩ , |G, nX = 0, nY = 2⟩)
are included to ensure accurate results in the two-time correlation functions. Specifically, the

correlation functions of the type G(2)
XX,XX(t, τ = 0) = ⟨a†

X(t)a†
X(t)aX(t)aX(t)⟩ would always be

zero if only one photon per cavity mode was considered.
By using this approach, the Hilbert space dimension is reduced to 18 (= 4 × 2 × 2 + 2) instead of
36 if two photons were fully included. This approximation significantly reduces the computation
time, as the numerical effort including phonons scales unfavorably with the dimension. We have
verified in the phonon-free case, comparing calculations made with the approximation and the
complete inclusion of two and three photons per cavity mode, that including more photons has
only negligible effects on the population dynamics and concurrence values for the parameter
regime studied in this paper.
Figure S1 illustrates the impact of the approximation for the case of TPE (same parameters as in

Fig. 3) without phonons. Panel (a) displays the two-time correlation G(2)
XX,XX(t, τ = 0), revealing

only minor deviations around t ∼ 20 ps, when compared to calculations that fully include two or
three photons per cavity mode. Similarly, panel (b) presents the dynamics of the cavity photon
number, also demonstrating only slight deviations.

3. NUMERICAL OPTIMIZATION FOR SUPER PARAMETERS

In Fig 2 in the main document, it was observed that a high concurrence exceeding C = 99 %
could be achieved over a wide range of parameters. Here, the excitation parameters for each
set were found through numerical optimization of the final biexciton occupation. Due to the
computational complexity involved in calculating the concurrence values, the parameters for the
SUPER scheme were optimized based on the biexciton population rather than directly optimizing
the concurrence. This approach is valuable in the way that it automatically provides results where
a high photon rate can be expected. For each values of α1 and ∆B, with a fixed ∆1 = −5 meV, the
optimal α2, ∆2 were determined. The pulse areas α1/2 were constrained to a maximum value of
35π.

Figure S2 shows the final occupation of the biexciton state using the same parameters as in Fig 2.
It is evident that for small pulse areas α1, the preparation fidelity drops rapidly. This outcome is
expected, as previous studies demonstrated that a high pulse area has to be used for the scheme
to work as intended [9, 10]. Interestingly, for intermediate biexciton binding energies (BBEs), the
preparation fidelity decreased to 70 % − 80 %. Due to the complex swing-up mechanism, there is
no simple, straightforward explanation for this decrease in this parameter regime.
We attribute it to the different system energies for varying BBEs that influence the mixing of
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Fig. S2. The final biexciton populations (disregarding decay, cavity coupling and phonons) for
the same parameters as in Fig. 2 in the main document: The parameters of the second pulse are
optimized for a maximum final biexciton population.

the dressed states, leading to a more or less optimal preparation depending on the interplay of
the dressed states as shown in Ref. [10]. This finding highlights that the regimes for optimal
concurrence and preparation fidelity (which, in turn, effects the photon rate) may differ. In the
presented case, both reach high values for small biexciton bindings and high α1. The parameter
set that yields the highest population, here for α1 = 32π, was then chosen for the further
investigations.

4. IMPACT OF CAVITY COUPLING

In all previous calculations involving a cavity, a constant cavity coupling strength of h̄g =
0.06 meV was used alongside a constant cavity out-coupling rate of h̄κ = 0.12 meV.
Figure S3 illustrates the influence of the cavity coupling on the concurrence and the number of
photon pairs emitted via the cavity for (a) SUPER and (b) TPE. For SUPER, a plateau-like region
emerges for cavity couplings up to approximately h̄g ∼ 0.2 meV, beyond which the concurrence
gradually decreases. The number of emitted photon pairs with the same polarization (NP

XX/YY)
rises sharply, as for small cavity couplings, the photons are emitted free-space before coupling
to the cavity. With a smaller γ, i.e., a longer lifetime, as typically found in most quantum dots
[11, 12], an even greater share of photon pairs is emitted via the cavity, so that an arbitrarily high
concurrence and a high photon yield can be achieved simultaneously.

As the cavity coupling strength increases, a larger portion of the emitted photons pass through
the cavity. Eventually, almost the entire excitation of the quantum dot is transferred to cavity
photon pairs. For very large couplings h̄g > 0.75 meV, additional photons are created due to
re-excitation during the laser pulse.
The number of photon pairs with different polarizations (NP

XY/YX) detrimental to the concurrence
rises only slowly with increasing coupling values. This behavior can be largely contributed to
the decoupling of the cavity from the QD during the preparation process. When the biexciton
is prepared and no emission occurs during the pulses, photons are only emitted to the |XX⟩
and |YY⟩ states. A higher coupling efficiency increases the probability of photons being emitted
already during the pulse.

In contrast, for TPE in a cavity, the absence of the decoupling mechanism results in a strong im-
pact of the enhanced photon emission on the concurrence, as depicted in Fig. S3(b). Immediately,
detrimental photon pairs are created during the preparation process, causing the concurrence
to rapidly drop to zero. With increasing cavity couplings exceeding h̄g ∼ 0.3 meV, the number
of emitted photon pairs also decreases, as the strong energy shift resulting from the dot-cavity
coupling hinders efficient population transfer.
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Fig. S3. (a) Concurrence and the number of photon pairs emitted via the cavity for SUPER-
excitation with the same parameters as in Fig. 3 in the main document, depending on the dot-
cavity coupling g. It is visible that for a strong dot-cavity coupling, the concurrence drops to
zero. In this regime, the decay is strongly enhanced such that the quantum dot already emits
the photons during the state preparation process, leading to photon pairs in the detrimental
|XY⟩ and |YX⟩ state. (b) same for TPE, where due to the lack of the decoupling, the creation of
detrimental photon pairs sets in immediately.

5. INFLUENCE OF TEMPERATURE ON POPULATION DYNAMICS

In Figure 4 in the main document, it was visible that the influence of the temperature shows
significant differences between SUPER and TPE. Up to 77 K, the final biexciton population only
slightly decreases for SUPER, when compared to TPE. Involving a cavity, the concurrence basically
remains a constant 99 % for SUPER, while it starts at about 69 % for TPE at T = 4 K and decreases
with rising temperature.
The findings for TPE are in agreement with previous studies [1, 13] that identified phonons as
being a substantial source of decoherence, leading to a decrease of the concurrence. Phonons lead
to renormalization of the cavity-dot coupling, effectively weakening the interaction [13].
The impact of phonons to the photon output can be seen in the population dynamics shown
in Fig. S4. Panel (c) displays the number of X/Y photons in the cavity, revealing that, when
phonons are included, fewer photons are emitted into the cavity at early times compared to
the phonon-free case. Additionally, the oscillations are damped. Panel (a) and (b) show the
population dynamics of the dot states for SUPER and TPE, respectively, indicating that phonons
disturb the process of TPE substantially more than SUPER.
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Fig. S4. The influence of longitudinal acoustic phonons on the dynamics of (a) SUPER and (b)
TPE in a cavity. The number of photons in the cavity is shown in (c).
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